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THE EFFECTS OF WIGGLER ERRORS ON FREE ELECTRON
LASER PERFORMANCE

1. Introduction

Intrinsic magnetic field errors 6B are present in any realistic wiggler mnagiet. Such

errors are unavoidable and arise from imperfections in the fabrication and assembly of
wiggler magnets. State-of-the-art wiggler construction techniques yield rmis field errors

on the order1 (6B/Bw)rma ) - 0.1 - 0.5%. These field errors perturb the electron beam as

it propagates through the wiggler and lead to i) a random walk of the beam centroid,.
6X, ii) variations in the parallel beam energy, 5-6 6 i'y, and iii) variations in the relative

phase of the electrons in the ponderomotive potential,' ' 6,. If left uncorrected, field
errors ultimately decrease free electron laser (FEL) gain (this reduction becomes more

significant for long wigglers). Reduction "i gain may occur from a loss oi opttcai guiding

(due to large 6x) or from a loss of FEL resonance (due to large 6',).

Past research, for the most part, has been primarily concerned with the random
walk bx. It has been shown that the random walk 62, may be effectively controlled by i)

transverse beam focusing 3" (finite ko, where ko is the betatron wavenumber) and by ii)

periodic beam steering. 2  By using either one or a combination of beam focusing and

periodic steering, in principle, the random walk 6x may be kept as small as desired. The

major conclusions of the present work are the following. Given that the random walk bar

may be effectively controlled, the phase deviation 64' may be identified as the single most
important parameter characterizing the effects of wiggler errors." - In particular, in order
to avoid significant reduction in gain, it is necessary that j64,f < 7r. In addition, transverse

beam focusing is not effective in controlling 6/,. Specifically, it may be shown that at the

wiggler end (64,) = (1/2)(b(ko = 0)), where () signifies an ensemble average. Furthermore.

beam steering may be used to reduce 164', when8 Ls < A0, J,Ir,' Ls is the length over
which the steering performed and A = 21r/ko. As an example, . ko = 0 and one steering

segment, (6b) = (1/3)(6 ')N, where (60)N is the value in the absence of steering.

As a further motivation, it is appropriate to consider some aspects of wiggler de-
sign. Typically, when "ordering" a wiggler from a vendor, limits are placed on 6B...,

and I fdz6BI. To meet these specifications, the vendor may arrange the mIagnet pole iD
an optimum sequence such that If dz6BI is minimized. The present research indicates.

however, that the optimum "figure of merit" to minimize is not the line integral if dJB11.

but the magnitude of the phase deviation 6V/'I.

Manuscnpt approved November 30, 1989.



2. Random Walk of the Beam Centroid

As the electron beam propagates through the wiggler, the electrons experience ran-

dom velocity kicks J.v via the v x 6Bh random force. The equation of motion for the

electron beam centroid motion including transverse gradients (weak focusing) is given by6

d26z/d'z = -kP.T + k .a,,6B /l, where k, is the wiggler wavenumber, kj9 is the beta-

tron wavenumber (ko = k,,a,,,/(v 2)) for a helical wiggler), 6B = 6B/BW,, B", is the ideal

wiggler peak magnetic field, a,,, = eB,,/k, ,mc 2 , -y is the relativistic factor of the electron

beam and z is the axial propagation distance. This equation may be solved to give the

random centroid motion 6

_ d:'cosko(z' - z)6t,(z') (1a)

0

L_ = -, dz'sinko(z' - z)6B ,(z'), (lb)
-ko 0

where 6A3 = br/c.

Given the precise functional dependence of the wiggler errors 6B(z) for a given wiggler,

the above expressions may be used to calculate bx(z) for that specific wiggler. However,

one does not always know ahead of time the full functional dependence of bB(z). Instead,

one may know only certain statistical properties of the field errors, such as the rms value

B,,,,. Hence, it is useful to consider an ensemble of statistically identical wigglers for

which the statistical properties of the field errors are known. By performing appropriate

averages over this ensemble, one may determine the mean (Q) and variance a for a quantity

Q and, hence, determine the most probable range of a single realization of Q. Throughout

the following, 6B(:) is assumed' to be a random function with zero mean, finite variance

and with an antocorrelation distance given by za f- A,/2. Also, in the following, a

helical wiggler will be assumed and generalization of the results for a linear wiggler is

straightforward.6

Statistically averaging over an ensemble of wigglers, it is possible to determine the

mean-square centroid motion6

D( sin 2k, 3
: ) (2)(bX2) = j ( sinb)o

(2b)b "( 2ko

where D = a2,ku,(B,)z/(2"). Physically, the centroid orbits 6x and 613, represent dif-

fusing betatron orbits characterized by a diffusion coefficient D. Notice that. by increasing
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k" by additional external focusing, one may, in principle, keep /f,,6 0 as small as desired.

Furthermore, notice that in the 1D limit, (2k6z)2 << 1, (b,32) = 2Dz and (6x 2 ) = 2Dz3 /3.

Hence, weak focusing (finite kq) is effective in reducing the asymptotic scaling of the ran-

dom walk 62,.a from z 3 /2 to z 1 / 2 . To avoid loss of optical guiding it is desirable to keep

(bx 2) << r , where r, is the radiation spot size.

3. Variations in the Parallel Beam Energy

Not only do the field errors perturb the perpendicular motion of the electrons, they

also perturb the parallel motion. This is true since a static magnetic field conserves total

electron energy. The parallel motion may easily be calculated' using the above expressions

for the perpendicular motion along with )3' +/3_ =constant. One may calculate various

statistical moments of the parallel motion,6 such as the mean parallel energy variation

(&m1) = (711) - Y110,
(6711) 1+ a(2,/4) (-- aw2k2w b2)ZcZ 3

7110 ( + a) -" w'

where the limit (2kpz) 2 >> 1 has been assumed.

Statistically, (6t11) may be interpreted as an effective energy spread due to field

errors.6 This effective energy spread may lead to a loss of FEL resonance. Heuristi-

cally, in order to maintain resonance, one expects that in the low or high gain regime

the effective energy spread must be small compared to the intrinsic FEL efficiency r,

1(6711)j/7110 < 77. In the trapped particle regime, maintaining resonance implies that

the effective energy spread must be small compared to the depth of the ponderomo-

tive well, I(b6T7}1/70o < je-'pI/(-rrc2 ), where 4), is the ponderomotive potential. For

example, in the low gain regime, 7 = 1/(2N). The inequality I(6711)I/7110 < 7 implies
2

bbm, < 1/(7rN) _ 0.3% for N = 100 (where 2, >> 1 has been assumed).

4. Deviations in the Relative Phase

To quantify how the parallel energy variation affects FEL gain, it is necessary to

consider the relative phase V, of the electrons in the ponderomotive wave, d'/dz E A +

k,, - W/(cL3.). In the small signal limit (aR - 0, where aR is the normalized radiation

field), the deviation in phase 6V, due to the field errors is given by

S/L dz'(2i3±0 6L3- + 6/32), (4)
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where ~.Lo is the ideal wiggle motion (in the absence of field errors) and where 63, is given

by Eq. (la). Statistically averaging over the wiggler ensemble gives

(Ia, 2 2 +~-~ o~~

Notice that (b,) Co: 2 /2 in the limit (Ikj: ) - 1: and kbh, sin the limIU

(2kaz) 2 << 1. Hence, transverse focusing only reduces -' by I 2. It should be msenitioned

that in the trapped particle regime, the effects of the synchrotron motion of Ihe eiectrons

may further reduce4 (6V').

Physically, bV, may be interpreted as an oscillation of the ponderomotive well due to

field errors. Maintaining FEL resonance requires At, to be small compared to w. i.e.. the

width of the well. In the low gain regime, this phase deviation must be kept small over the

entire wiggler length L. Requiring I(6-'z: -L),w - implies AP,,. l"(wNI -- o.3'"

for N = 100 (where a, -. > I has been assumed). This is the same condition as obtained

above from considering the effective energy spread. In the high gain rf.ime. the situation

is somewhat different, since the length scale over which the FEL resonant interactiol

occurs is the e-folding length i/r, where r is the spatial growth rate of the radiation.

Maintaining resonance in the high gain regime corresponds to keeping b, small over an

e-folding length: j (bv,(: = /I)) i <. 7. Since, typically 11I - - L. one expects the high

gain not to be strongly affected by the phase deviation Av' (in contrast to the low gain).

5. Degradation of FEL Gain

Quantitatively, the effect of the phase deviation on the FEL gain in the low gain

regime may be determined analytically. The normalized mean amplitude gain is related

to 64, by the following expression,

= j dz' j dz'(.' - z") (sin I[k.(: - .") -4- A6,) , (6)

where A5/, = bV,(:') - 6,(:") and p = normalized frequency :nisiatch. SetIIg Abt -- 0

in the above equation gives the gain in the absence of field errors.

Evaluation of the ensemble average in the above expression is dependent on the statis-

tical distribution of the function A6b'. Recall that the phase deviation bv. is proportional

to terms which are linear in the field error 6B as well as terms which are quadratic in

the field error, as indicated by Eq. (4). If the field error 6B is a Gaussian distributed
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random variable, then terms quadratic in bB tend to obey a Gamma distribution. Hence,

if the quadratic terms dominate in the expression for b6, then 64, will tend to be Gamma

distrihuted. Assuming Ab!, to be approximately Gamma distributed allows the ensemble

average in Eq. (6) to be evaluated using the Rice-Mandel approximation,2' , yielding

()= jdz"(z' - z) + (Ab') If2) f(

x sin [Ak,,,(z'- z") + f tan-1 ((AbV,)/f),

where f = (A64')2/((z/64,2 ) - (A64')2).

It is possible to show that the mean gain is a function of only two parameters, (C) =

F(ti, (64')maz), where (64')maz = (6V,(z = L)). Furthermore, one can show that (G)

decreases as (6 ib)ma increases. In a similar fashion, it is possible to calculate expressions

for the variance of the gain. This variance tends to be large, as is indicated by the numerical

simulations discussed below.

Equation (7) may be evaluated numerically to determine the behavior of the mean

gain. Figure 1 illustrates this behavior, in which the mean gain (6) is plotted as a function

of the frequency mismatch p for several values of rms field error SBm,,,. The parameters in

Fig. 1 correspond to a linearly polarized wiggler with B,, = 5.4 kG, A,, = 2.8 cm, L = 3.6

m and -y = 350 in the limit kp = 0 (transverse focusing is neglected). Figure 2 shows the

peak gain (G),, as a function of rms field error tS,.,e. In Fig. 2, the solid line shows

the solution to Eq. (6) in which the ensemble average is evaluated numerically (assuming

a uniform distribution of field errors between ±B,,,,), whereas the dashed curve shows

the solution to Eq. (7) in which the ensemble average is evaluated using the Rice-Mandel

approximation. The circles in Fig. 2 are the result of an FEL simulation code for individual

wiggler realizations (particular arrangements of random field errors). In these simulation

runs, a random field error model similar to that of Kincaid 2'" was used along with an

electron beam of current 2.0 A with an enittance of 10 pm-rad. Notice that the large

spread in the simulation results indicates a relatively large variance of the gain.

It is also possible to calculate the effect of wiggler errors on the spatial growth rate

in the high gain regime. 7 Figure 3 shows the numerically evaluated spatial growth rate F

(normalized to the value in the absence of field errors) as a function of the rms field error

Btm,,,. In Fig. 3, the solid points indicate the mean growth rate and the error bars indicate

one standard deviation about that mean. These results are for a linearly polarized wiggler

with B,, = 2.4 kG, A,,, = 8.0 cm and L = 15 m; and for an electron beam of energy 50

MeV with a current of 1.5 kA and an emittance of 4.4 pm-rad. Notice that even for large
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rms field errors, bb,,, = 0.5%, the mean spatial growth rate is only slightly reduced (by

< 4%). This is in agreement with the discussion presented in the previous section.

6. Beam Steering

One method for reducing the detrimental effects of field errors is through the use

of beam steering 2- 8 (external fields are used to steer the electron beam back to axis).

Analytically, this may be modeled by injecting the electron beam with an initial perpen-

dicular velocity 3j0 such that the centroid displacement is zero at the end of the wiggler

5x(z = L) = 0. The intial perpendicular velocity may be specified in terms of the pert urbed

perpendicular velocity in the absence of steering 6 3±N by the relation

-L 1 ] dz'61iN(Z), (g)

where bB±N is given by Eq. (la).

Using the above expression for #_±0, one may calculate the electron motion in the

presence of the field errors including the effects of beam steering. For example. the phase

deviation in the absence of transverse focusing (ko = 0) is given by

(64,) = _- 0 ,okD (z2 +f 3zL ( L + - (9

where E = 1 with steering and 0 without steering and where -y110 is the parallel relativistic

factor in the absence of field errors. In particular, notice that the effect of steering is to

reduce the mean phase deviation by a factor of 1/3, (bV'(L, = 1)) = (I/3)(6V-(L.f = 0)).

It is also possible to calculate (d) including the effects of steering.

The effect of beam steering at the wiggler entrance on the phase deviation V is

illustrated in Fig. 4 for the cases (a) without steering and (b) with steering. Here the solid

curves represent the mean (6b) and the dashed curves represent one standard deviation

about the mean (64') ± a, where a is the variance of the phase deviation. These plots are

for a linearly polarized wiggler with B, = .5.4 kG. A,. = 2.8 cm. L = 3.6 a. 1 = 3',0

and 6bm = 0.3% in the limit k6 = 0 (transverse focusing is neglected). Notice tli the

effect of steering at the wiggler entrance reduces (6wv) by 1/3 at the end of the wip.gler. as

is indicated by Eq. (9). Also, notice that steering has reduced the variance of the phase

deviation by an equally significant amount. For cases in which k,3 g 0. it is possible to

show8 that steering reduces the mean phase deviation when the length over which the

6



steering in performed is less than the betatron wavelength, L. - A,. For cases in which

L, > Aj, beam steering may increase the value of (bv).

The effect of beam steering at the wiggler entrance on the FEL gain (in the low gain

regime) is illustrated in Fig. 5. Here the peak normalized gain (6),,,o, is plotted as a

function of the rms field error tB,,. for the case with steering and for the case with no

steering. The parameters in Fig. 5 correspond to a linearly polarized wiggler with B,,. = 5.4

kG, A,, = 2.8 cm, L = 1.8 m and -i = 350 in the limit k0 = 0. Figure 5 indicates that the

mean gain may be significantly enhanced by using steering at the wiggler entrance.

7. Error Reduction Techniques

Several methods exist for reducing the detrimental effects of wiggler errors. Above

it was discussed how steering 2 - the electron beam at the entrance of the wiggler may

improve FEL performance. This concept may be generalized to the case of multiple beam

steering,3' 4'" in which the electron beam is steered back to axis in several places along

the length of the wiggler. In addition to beam steering, one may consider wiggler errors

which are correlated.' The results discussed above are for wigglers with random errors

which are assumed to be uncorrelated for separation distances greater than zc a- A,,/2.

By considering a wiggler in which the error for a given magnet pole is correlated to the

errors of the surrounding poles, one may construct beneficial correlations which reduce the

detrimental effects of the errors.

Alternatively, one may reduce the detrimental effects of the errors by considering

an optimal arrangement of the magnet poles.1 - 1 2 That is, the magnet poles are to be

arranged in such a way that the detrimental effects of the error of a given pole tend to

cancel those of the surrounding poles. More specifically, the magnet poles are arranged

in such a way as to minimize an appropriate "cost function". For example, one may

choose to arrange the poles such that the magnitude of random walk 16z1 is minimized,

where 5z -, f dz' sin kI(z' - z)6bi5(z' ) . (Notice that minimization of If dzB does not.

correspond to minimization of IbxI.) However, the results discussed above indicate that

a more appropriate cost function is the magnitude of the phase deviation 16', 6/

f dz'(213.Lo513_L + 13' ), where 63, f dz' cos k, (:' - z )6b.(:'). By minimizing j ' I. one

reduces the amount. of gain loss. Ideally, one would like to maxinmize the actual expression

for the gain, Eq. (6), but the functional dependence of the gain on the field errors appears

much too complicated to be of practical usefulness.
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8. Conclusions

The analytical ard numerical work discussed above indicates that the the phase devi-

ation b/' is the 4; gle most important parameter characterizing the effects of wiggler errors.

Although transverse beam focusing and beam steering are highly effective in controlling

the r-.ndom walk br (in principle, bx may be kept as small as desired), this is not the case

for the phase deviation bV,. Transverse beam focusing only reduces the mean phase devi-

ation by a factor of 1/2, (bV') = (1/2)(f'(k3 = 0)). Beam steering may be used to reduce

IbVb only when Ls < A0. As an example, for the case k3 = 0 and using steering at the
wiggler entrance indicates that the mean phase deviation at the wiggler end is reduced by

a factor of 1/3, (bg'(E = 1)) = (1/3)(',(E = 0)). The phase deviation leads to a reduction

of FEL gain (the low gain regime is affected more strongly than the high gain regime). To

avoid significant loss in gain, the above analysis implies that I(bV')I < 7r. In the low gain

regime, this gives

6Bm, < af/(irN), (10)

where a = (1 + a ,)'/ 2 /a,,, for a helical wiggler. Possible error reduction techniques include

multiple beam steering, correlation of field errors and optimal arrangement of magnet

poles. An optimal arrangement of poles corresponds to minimization of JbVj, where bV/ is

given by Eq. (4).
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